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A new interior solution of Einstein’s field equations for a 
spherically symmetric perfect fluid in shear-free motion 
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Sektion Physik der Friedrich-Schiller-Universitat Jena, DDR-6900 Jena, Max-Wien-Platz 
1, D D R  

Received 12 April 1983 

Abstract. Although spherically symmetric expanding (or contracting) stars are a very 
important class of objects for the application of general relativity theory, only very few 
perfect fluid solutions of Einstein’s equations have been found so far. In this paper, a 
new class of exact solutions is presented which contains two arbitrary functions of time 
and one additional parameter. 

1. Line element and field equations 

It is well known that for shear-free motion of a perfect fluid a coordinate system can 
be introduced which is simultaneously comoving and isotropic: 

ds2 =exp[2A(r, t j][dr2+r2(d62+sin2 6 dq2)]-exp[2v(r, t ) ]  dt2, 
(1.1) 

ui  = (0, 0, 0, -e”). 

If, moreover, the motion has non-vanishing expansion (upa # O + a A / a t  # O), then with 

(1.2) 
2 L(x,  t )  = exp[-A ( r ,  t ) ] ,  x = r  , 

the field equations can be reduced to a single ordinary differential equation 

L,xx = L2F(x) ,  (1.3) 

the metric function e” being given by 

e y  = A , ~  e-’“). (1.4) 

To obtain a metric, one has to specify f ( t )  and F ( r2 )  and find a solution of (1.3). The 
rest mass density p and pressure p of the fluid can then be computed from e.g. 

-2h xop = 3 eZf -e  (2A,,,+A:,+4A,,/r), 

xoph,, = e--3A ar[eh(Af, +2A,,/r)-exp(3A +2f)] 

(see Kramer et a1 (1980) for further details and references). 
To find an exact solution for a spherically symmetric perfect fluid in shear-free 

(and expanding or contracting) motion means to find a solution L(x,  t )  of (1.3), the 
function F ( x )  being suitably chosen. Since (because of A , r  # 0) the function L must 
depend on t ,  whereas F does not, the task is more difficult than it may look at the 
first glance. In practice, the problem should be formulated as follows: find a function 

(1.5) 
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F ( x ) ,  for which a solution y ( x ;  cpo, &,) of 

y “  = y2F(x)  (1.6) 

can be constructed which contains two (or one) arbitrary constants cpo, +o. In the 
context of equation (1.3), these constants are arbitrary functions of time which ensure 
L,( # 0. 

2. How to find suitable functions F ( x )  

The only systematic way to check whether a given ordinary differential equation of, 
say, second order can be solved by means of quadratures seems to be that of Lie, 
treated in extenso in his textbook (Lie 1912). The main idea is to ask whether the 
differential equation is invariant when performing an infinitesimal transformation 

If two or more such transformations U exist, then the differential equation can be 
solved by quadratures and elimination procedures. If only one transformation U 
exists, then a reduction to a first-order differential equation is possible. 

When applying this scheme to the differential equation (1.6) it turns out that an 
invariance transformation U will exist only if F ( x )  is a solution of the fourth-order 
differential equation 

d3B(x)/dx3=(d3/dx3)(aF-2’S-~cF-215 F2/’ dx) = 4(ex + g)F, (2.2) 

the constants a, c, e and g being suitably chosen. If (2.2) is satisfied, then U can be 
constructed by means of 

Unfortunately, a full and detailed explanation of Lie’s method would need too 
much space, so that we have to refer to his textbook. Here, we shall simply give a 
list of solutions F ( x )  of equation (2.2) for which the differential equation y ” =  F(x )y2  
can either be reduced to a first-order differential equation (li 3) or can be solved 
completely by means of quadratures (li 4). Of course, the reader can understand and 
check all calculations without having read Lie’s textbook. 

Since the line element (1.1) is invariant under the substitution ? = r - ’ ,  functions 
F and fi which are connected by f i ( x )  = x-’F(x-’)  will give the same metric and need 

are not be considered separately. In this sense, e.g. F = x-” l7  and F = x  
equivalent. On the other hand, functions F ( x )  and E = aF(x + b )  will give different 
metrics, although the corresponding solutions of (1.6) are rather trivially related to 
each other. 

Obviously Kustaanheimo and Qvist (1948) were the first to apply Lie‘s method 
to the problem of spherically symmetric solutions, but they did not find all the solutions 

-20/7 

of (2.2). 
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3. Functions F ( x )  for which a first integral of y " = y * F ( x )  is known 

In this section, we have (in the form of a list) collected those functions F ( x )  for which 
y "  = y 2 F ( x )  can be reduced to a first-order differential equation, together with these 
differential equations. In general, these are Abelian differential equations, and their 
solutions cannot be given in a closed form. The subcases where y " = y 2 F ( x )  can be 
solved completely are treated in 9: 4. 

Only in the first example (3.1) will the procedure be explained in some detail. 
The other cases are treated along the same lines and the same notation will be used. 

3.1. F = x "  

With F = x ", also F = a ( x  + b)" is covered. If one makes the ansatz 
y t  = X - ( n + 3 ) f ( y X n + 2 )  1 

then the function f = f ( u )  has to satisfy 

dfldu = [(n + 3)f + u'l/[(n + 2 ) ~  +f]. 

If a solution f = f (U, PO)  is known, then 

( 3 . 1 ~ )  

(3 . lb)  

gives an implicit representation of the general solution y = y ( x ,  cpo, tL0) of equation 
(1.6). In the context of equation (1.3), cpo and t,bo are arbitrary functions of time. 

( 3 . 2 ~ )  

(3.2b) 

(3.3c) 

4. Functions F ( x )  for which y" = y 2 F ( x )  can be completely integrated 

The explicit solution y ( x ;  cpo, 4,) of y f '  = y2F(x)  is known only in a few subcases of 
the functions F ( x )  given in Q 3. 
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4.1. F ( x )  = (ax2 +26x + c ) - 5 ’ 2  

This class covers the subcases n = - $  of ( 3 . 3 )  (for a # 0), and n = -3 and n = 0 of 
(3.1) (for U = 0). The corresponding solutions were (in the general case) first found 
by Kustaanheimo and Qvist (cf also Kramer et a1 1980). For the sake of completeness, 
we shall give the relevant formulae 

du  

for F # 0, (4.1) [ ~ u ’ + ( ~ ~ - u c ) u ~ + ~ ~ ] ~ ~ ~ ’  

U = y ( u x 2 + 2 6 x  + c ) - ” ~  

y =pox + G o  for F = 0. 

4.2. F ( x )  = x - ” ’ ~  

In this case a first integral can be constructed which reads 
1 3 617 1 2 - 3  21 -6’7 2 - 1  3 -617 3 

9 0 ~ 4 7  x y T ~ ~ U ~ ’ - ~ Y ’ - T X  U 67 x U , 
u = y x  * 

-1 /7  (4.3) 

Note that this integral has not been found by applying equation (3.16). The general 
solution of y ”  = y x can be obtained by inserting y ‘(x, y ; po)-as given by (4.3)- 
into 

2 -1s/7 

This leads to 

-X ‘I7du + [$U + ( 12/7’)]~ -6’7d~ 
[ ( 4 / 7 3 ) ) ( p o x 6 1 7 + $ u 3 + ~ u 2 + ( 7 2 / 7 4 ) ~  +(122/76)]112’ 0 - 49x 

(4.5) -1/7 u = y x  . 

5. Concluding remarks 

Of course it is always nice to have a class of exact solutions, but-as often-it is a 
rather difficult task to extract physical information, since metric, mass density and 
pressure are given only implicitly. To obtain e.g. the metric function e*, one should 
solve 14.5) for U = u[x. po(t), G o ( t ) ]  to get e-‘‘ = r2’7u[r2, cpo ,  cLo]. To discuss its 
dependence on, say, q d t )  seems to be an intractable problem, although the integral 
(4.5) can be expressed in terms of elliptic functions. Even in the simplest case F = 0 
of equation (4.2) the detailed discussion of the solution was a paper in its own right 
(Bonnor and Faulkes 1967). 
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